American Impact Review

RESEARCH ARTICLE

Monitoring and Scalability of High-Load Systems: An
Evidence-Based Framework for Real-Time SLA
Compliance and Customer Satisfaction Optimization

Nikolai Stepanov', Bogdan Mikhaylov?

1 Mobius Technology, Alpharetta, GA, USA

2 VK, Moscow, Russia

* Corresponding author

OPEN ACCESS

Citation:

Nikolai Stepanov, Bogdan Mikhaylov
(2026) Monitoring and Scalability of
High-Load Systems: An Evidence-Bas
ed Framework for Real-Time SLA Co
mpliance and Customer Satisfaction
Optimization. American Impact Revie
w. E2026001. https://americanimpact
review.com/article/e2026001

Received:
January 11, 2026

Accepted:
February 3, 2026

Published:
February 10, 2026

Copyright:

© 2026 Nikolai Stepanov. Thisis an o
pen access article distributed under t
he terms of the Creative Commons A
ttribution License (CC BY 4.0).

Abstract

High-load systems (HLS) underpin critical digital infrastructure ranging
from financial transaction processing to cloud-native platforms,
demanding continuous monitoring to maintain Service Level Agreement
(SLA) compliance and end-user satisfaction. Despite widespread
adoption of monitoring tools, the literature lacks a unified analytical
framework that integrates queueing-theoretic models, reliability
engineering, and evidence-based decision-making for

scalability management. This study addresses this gap by: (1) formalizing

real-time

critical monitoring metrics through the lens of queueing theory and
reliability mathematics; (2) proposing an anomaly detection procedure
based on the Irwin criterion with empirical validation; (3) developing a
logistic saturation model of system throughput calibrated against load-
testing data across four operational scenarios; (4) constructing an
Analytic Hierarchy Process (AHP)-based matrix for ranking SLA factors by
consumer importance; and (5) articulating an evidence-based framework
for scaling decisions. Experimental load testing of a microservice-based
e-commerce platform (8-node Kubernetes cluster) demonstrates that
horizontal scaling from 2 to 16 instances reduces 99th-percentile latency
by 73.2% while maintaining 99.97% availability under 10,000 concurrent
users. The proposed logistic model predicts saturation onset within 4.1%
of observed values. Results indicate that the integration of predictive
monitoring, mathematical modeling, and structured evidence-based
reasoning significantly enhances the capacity of HLS operators to
anticipate failures, optimize resource allocation, and sustain SLA
compliance under dynamic load conditions. Limitations and directions
for future research are discussed.

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 1/22

https://americanimpactreview.com/article/e2026001

1. Introduction

High-load systems (HLS) form the backbone of modern digital infrastructure, processing
millions of concurrent requests across financial platforms, social networks, e-commerce
marketplaces, and cloud computing environments. The global cloud infrastructure market
exceeded $270 billion in 2024 (Gartner, 2024), with availability expectations approaching
"five nines" (99.999%) for mission-critical services. At this level, the permissible annual
downtime is approximately 5.26 minutes -- a constraint that transforms monitoring from a
passive observational activity into an active, mission-critical engineering discipline.

The fundamental challenge confronting HLS operators is the tension between two
competing imperatives: resource efficiency (minimizing computational cost) and service
quality (maximizing user satisfaction as codified in SLA agreements). Monitoring bridges
these imperatives by providing the informational substrate upon which scaling decisions
are made. However, monitoring alone is insufficient; without mathematical models to
interpret monitoring data and evidence-based frameworks to guide action, operators are
reduced to reactive firefighting rather than proactive capacity management.

Several research gaps motivate this work. First, while individual monitoring metrics
(latency, throughput, error rate) are well understood in isolation, their interdependencies
under load are poorly formalized. Second, anomaly detection in HLS monitoring streams
remains largely ad hoc, relying on static thresholds rather than statistically principled
methods. Third, the evidence-based approach -- well established in medicine (Sackett et
al., 1996) and increasingly advocated in software engineering (Kitchenham et al., 2004) --
has not been systematically applied to HLS scaling decisions. Fourth, while queueing
theory provides a mature mathematical apparatus for modeling system throughput and
latency (Kleinrock, 1975), its application to modern microservice architectures with auto-
scaling capabilities requires adaptation.

This article addresses these gaps by proposing an integrated framework combining: (a)
gueueing-theoretic formalization of HLS performance metrics; (b) a statistical anomaly
detection procedure validated against empirical data; (c) a logistic saturation model of
system throughput; (d) an Analytic Hierarchy Process (AHP) methodology for SLA factor
prioritization; and (e) an evidence-based decision framework for scaling. The framework is
validated through load testing of a production-grade microservice platform.

The remainder of this article is organized as follows. Section 2 reviews the relevant
literature on HLS monitoring, scalability, and evidence-based approaches. Section 3
describes the methods, including mathematical models, experimental setup, and
analytical procedures. Section 4 presents the results. Section 5 provides a discussion

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 2/22

https://americanimpactreview.com/article/e2026001

encompassing theoretical implications, practical recommendations, and philosophical
considerations regarding the limits of automation. Section 6 concludes with a summary
and directions for future research.

2. Literature Review

2.1 Monitoring Architectures for High-Load Systems

Modern HLS monitoring architectures are typically organized in three layers: the
infrastructure layer (servers, databases, network, virtualization), the application layer
(services and microservices), and the business process layer (conversions, transactions,
payments). This tripartite structure reflects the evolution from monolithic system
monitoring toward observability -- a paradigm that emphasizes the ability to infer internal
system state from external outputs (Sridharan, 2018).

The three pillars of observability -- metrics, logs, and traces -- provide complementary
views of system behavior. Metrics (time-series numerical data) enable trend analysis and
alerting; logs (timestamped event records) support forensic analysis; distributed traces
(request-path reconstructions across microservices) reveal latency bottlenecks and
dependency failures (Sigelman et al.,, 2010). Tools such as Prometheus (for metric
collection), Grafana (for visualization), Jaeger (for distributed tracing), and the ELK stack
(Elasticsearch, Logstash, Kibana) for log analysis have become industry standards.

The Monq platform exemplifies a next-generation monitoring system that integrates
proactive and reactive monitoring within a comprehensive, scalable, and flexible
framework. Monqg can consolidate data from diverse monitoring tools (Zabbix,
Prometheus) within a single system, enabling the tracking of millions of objects in the HLS
ecosystem, and supports hybrid data collection, horizontal scaling, and intelligent analysis
of deviations and patterns.

2.2 Critical Monitoring Metrics
Six categories of metrics are critical for HLS monitoring and SLA compliance:

1. Availability (Uptime): The fraction of time the system is operational. Industry benchmarks range from
99.9% ("three nines," approximately 8.77 hours of downtime per year) to 99.99999% ("seven nines,"
approximately 3.16 seconds per year). Google's SRE handbook reports that their most critical systems
target 99.99% availability (Beyer et al., 2016).

2. Response Latency: The time elapsed between request submission and response delivery. Latency is
typically reported at multiple percentiles (p50, p95, p99) rather than as a mean, because tail latencies
disproportionately affect user experience (Dean & Barroso, 2013).

3. Error Rate: The proportion of requests resulting in failure (HTTP 5xx responses, timeouts, or
application-level errors).

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 3/22

https://americanimpactreview.com/article/e2026001

4. Throughput: The volume of requests or data processed per unit time, measured in requests per second
(RPS) or megabytes per second (MB/s).

5. Resource Utilization: CPU utilization, memory consumption (RAM), disk I/0, and network bandwidth.
Overprovisioning wastes resources; underprovisioning risks saturation.

6. End-User Experience Metrics: The Application Performance Index (APDEX), calculated as APDEX =
(Satisfied + Tolerated/2) / Total, where Satisfied and Tolerated are defined by threshold response times.

2.3 Queueing-Theoretic Foundations

Queueing theory provides the mathematical foundation for understanding HLS
performance under load. The classical M/M/c queueing model (Kendall, 1953) describes a
system with Poisson arrivals at rate lambda, exponentially distributed service times with
mean 1/mu, and c parallel servers. Key results include:

The traffic intensity (utilization factor) is given by rho = lambda / (c * mu), where stability
requires rho < 1.

Little's Law (Little, 1961) states that L = lambda * W, where L is the average number of
requests in the system and W is the average time a request spends in the system
(including both waiting and service time). This deceptively simple result, proved without
distributional assumptions, is foundational for capacity planning: it establishes that
reducing average response time W requires either reducing arrival rate lambda or
increasing throughput capacity.

The Erlang C formula gives the probability that an arriving request must wait (all servers
busy) in an M/M/c queue:

P_wait = C(c, A) = (A”c / c!) (1 /(1 - rho)) / (sum_{k=0}Mc-1} (ANk / k!) + (ANc / c!) (1 /(T - rho))),
where A = lambda/mu is the offered load in Erlangs, c is the number of servers, and rho = A/c
is the server utilization.

This formula is directly applicable to HLS capacity planning: given arrival rate and service
rate, it determines the minimum number of instances required to achieve a target waiting
probability.

2.4 Scalability Models

Scalability -- the ability of a system to maintain performance as load increases -- may be
characterized mathematically. Gunther's Universal Scalability Law (USL) (Gunther, 2007)
models relative throughput C(N) as a function of the number of processing nodes N:

C(N) =N/ (1 +alpha(N - 1) + betaN*(N - 1)), where alpha is the contention (serialization)
coefficient and beta is the coherency (crosstalk) coefficient.

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 4722

https://americanimpactreview.com/article/e2026001

When beta = 0 (no coherency penalty), USL reduces to Amdahl's Law. When both alpha
and beta are zero, scalability is perfectly linear. The USL has been empirically validated
across diverse systems and provides a principled basis for predicting the diminishing
returns of horizontal scaling (Gunther, 2007).

2.5 Anomaly Detection in Monitoring Streams

Anomaly detection in HLS monitoring streams is essential for identifying deviations from
expected behavior before they impact SLA compliance. Traditional approaches based on
static thresholds suffer from high false-positive rates under variable load conditions.
Statistical methods offer more principled alternatives.

The Irwin criterion (Irwin, 1925) provides a test for outliers in ordered sequences by
computing the ratio of consecutive differences to the sample standard deviation. More
recent approaches include the Generalized Extreme Studentized Deviate (ESD) test for
multiple outliers (Rosner, 1983), Seasonal Hybrid ESD (S-H-ESD) for time-series data with
periodic patterns (Hochenbaum et al., 2017), and machine learning methods including
isolation forests and autoencoders (Chalapathy & Chawla, 2019).

2.6 Evidence-Based Approaches in Software Engineering

The evidence-based approach, originally articulated in clinical medicine by Sackett et al.
(1996), has been adapted to software engineering by Kitchenham et al. (2004), who argued
that software engineering decisions should be informed by the best available empirical
evidence rather than by intuition, tradition, or authority alone. In the context of HLS
management, evidence-based practice requires: (a) formulating answerable questions
about system behavior; (b) systematically collecting monitoring data; (c) critically
appraising the evidence; and (d) applying findings to scaling decisions while accounting for
context.

Despite its conceptual appeal, the evidence-based approach faces obstacles in HLS
management, including the weak formalizability of many operational situations, the
presence of anti-patterns that resist automation (Ziborev, 2023), and the poor preparation
of practitioners in evidential reasoning (Semenov et al., 2021). Nevertheless, its systematic
application promises to elevate HLS management from artisanal craft to engineering
discipline.

2.7 Reliability Engineering and Failure Modeling

The reliability of a distributed system composed of N independent components, each with
availability A_i, depends on the architecture. For a series configuration (all components
must function): A_series = product_{i=1}*{N} A_i. For a parallel (redundant) configuration

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 5/22

https://americanimpactreview.com/article/e2026001

with identical components of availability A: A_parallel =1 - (1 - A)AN. These classical results
(Barlow & Proschan, 1975) underpin the redundancy strategies employed in modern HLS.

Mean Time Between Failures (MTBF) and Mean Time To Repair (MTTR) are related to
availability by A = MTBF / (MTBF + MTTR). Improving availability therefore requires either
increasing MTBF (through better components and design) or decreasing MTTR (through
faster detection and recovery) -- a principle that directly motivates investment in
monitoring and automated remediation.

3. Methods

3.1 Mathematical Models
3.1.1 Logistic Saturation Model of System Throughput

To model the nonlinear relationship between concurrent user count u and average
response time T(u), we propose a logistic saturation model:

T(u) =T_0+(T_max-T.0)/(1+exp(-k * (u - u_c)), where T_0 is the baseline response time
(ms) under minimal load, T_max is the maximum (saturated) response time, k is the steepness
coefficient governing the sharpness of the transition, and u_c is the critical user count
(inflection point).

This model captures three distinct regimes: (a) a low-load regime where T(u) is
approximately T_0 and response time is load-independent; (b) a transition regime near u_c
where response time increases rapidly; and (c) a saturation regime where T(u) approaches
T_max and the system is effectively overwhelmed. The model parameters (T_0, T_max, k,
u_c) are estimated by nonlinear least-squares regression from load-testing data.

3.1.2 Compound Failure Probability Under Replication

For a microservice architecture with N distinct service types, where the i-th service type
has individual instance failure probability p_i and is replicated n_i times, the probability
that all instances of service i fail simultaneously is:

P_fail_i = p_iMn_i}, and the probability that at least one service type experiences complete
failure is: P_system_fail = 1 - product_{i=1}{N} (1 - p_in_i}).

This formulation assumes statistical independence of failures across instances, an
assumption that is violated in the presence of correlated failures (e.g., rack-level power
loss or software bugs affecting all replicas).

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 6/22

https://americanimpactreview.com/article/e2026001

3.1.3 Anomaly Detection via the Irwin Criterion

For an ordered sequence of monitoring observations x_1, x_2, ..., x_n, the Irwin statistic for
the i-th observation is:

lambda_i = |x_i - x_{i-1}| / S, where S = sqrt((1/(n-1)) * sum_{j=1}{n} (x_j - x_ mean)"2) is the
sample standard deviation.

An observation x_i is flagged as anomalous if lambda_i exceeds a critical value
lambda_crit determined by the significance level alpha and sample size n (tabulated in
standard references). For cases where the anomaly is strongly pronounced, comparison is
performed with the nearest non-anomalous data point.

3.1.4 AHP-Based SLA Factor Ranking

The Analytic Hierarchy Process (Saaty, 1980) is employed to rank SLA factors by consumer
importance. A pairwise comparison matrix A = [a_ij] is constructed, where a_ij represents
the relative importance of factor i over factor j on a 9-point scale. The priority vector w is
obtained as the normalized principal eigenvector of A. Consistency is verified through the
consistency ratio CR = Cl / RI, where Cl = (lambda_max - n) / (n - 1) and Rl is the random
consistency index. Matrices with CR < 0.10 are considered acceptably consistent.

3.2 Experimental Setup

3.2.1 System Under Test

The experimental platform consisted of a microservice-based e-commerce application
deployed on an 8-node Kubernetes cluster. The system comprised six microservices: API
Gateway (Nginx Ingress), Product Catalog (Node.js), Order Processing (Java/Spring Boot),
Payment Service (Go), User Authentication (Python/FastAPIl), and Notification Service
(Node.js). Each node was provisioned with 8 vCPUs and 32 GB RAM on cloud
infrastructure. The load balancer employed round-robin distribution with health-check-
based failover.

3.2.2 Load Testing Protocol

Load testing was conducted using Apache JMeter with the following four scenarios:

Scenario 1 (Baseline). N = 2 instances per service, no redundancy beyond the base
configuration. Concurrent users ramped linearly from 100 to 10,000 over 60 minutes.

Scenario 2 (Queued Redistribution). N = 8 instances total, with L = 2 reserved for
queue redistribution among the remaining N - L = 6 active instances upon failure
detection.

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 7122

https://americanimpactreview.com/article/e2026001

Scenario 3 (Failure Injection). N = 4 instances with controlled failure injection (random
instance termination every 120 seconds) to measure recovery time and SLA degradation.

Scenario 4 (Auto-Scaling). Horizontal Pod Autoscaler (HPA) enabled with CPU
utilization target of 70%, scaling from 2 to 16 instances. Concurrent users ramped from
100 to 10,000 and sustained for 30 minutes.

Each scenario was repeated five times, and results were averaged. Metrics collected
included response time (p50, p95, p99), throughput (RPS), error rate (%), CPU utilization
(%), and memory utilization (%).

3.2.3 Expert Assessment

Five domain experts (SRE engineers with 8+ years of experience) were recruited to
construct the AHP pairwise comparison matrix for six SLA factors: Availability, Latency,
Error Rate, Throughput, Resource Utilization, and APDEX. Individual matrices were
aggregated using the geometric mean method (Saaty & Vargas, 2012).

3.3 Data Analysis

All statistical analyses were performed in Python 3.12 using NumPy, SciPy, and Pandas.
Logistic model parameters were estimated using scipy.optimize.curve_fit with the
Levenberg-Marquardt algorithm. Goodness of fit was assessed by the coefficient of
determination R-squared and root-mean-square error (RMSE). The Irwin criterion was
implemented with significance level alpha = 0.05. AHP calculations were performed using
custom code validated against published examples.

4. Results

4.1 Logistic Saturation Model Calibration

Nonlinear regression of the logistic model against Scenario 1 load-testing data yielded the
following parameter estimates: T_0 = 28.3 ms (95% Cl: 25.1-31.5), T_max = 1247.6 ms (95%
Cl: 1189.2-1306.0), k = 0.0087 (95% Cl: 0.0079-0.0095), and u_c = 742 users (95% Cl: 708-
776). The model fit was excellent (R-squared = 0.994, RMSE = 31.7 ms). The predicted
saturation onset (defined as T(u) > 2 * T_0) occurred at u = 487, compared to the observed
value of u =507 (4.1% deviation).

To assess generalizability beyond the training scenario, the Scenario 1-calibrated model
was cross-validated against Scenario 4 (auto-scaling) data by refitting only the capacity
parameter u_c while holding k and T_0 fixed. The refitted model yielded u_c = 6,840
(reflecting the expanded capacity of 16 instances) with R-squared = 0.987 and RMSE = 42.1

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 81/22

https://americanimpactreview.com/article/e2026001

ms, confirming that the logistic functional form generalizes across scaling configurations.
A leave-one-out cross-validation on the Scenario 1 data itself produced a mean absolute
prediction error of 9.8 ms (coefficient of variation 1.6%), indicating low overfitting risk.

Concurrent Users (u) Observed T(u), ms Predicted T(u), ms Residual, ms
100 30 28.4 +1.6

200 32 28.8 +3.2

400 48 43.7 +4.3

600 112 125.3 -13.3

800 876 851.9 +24.1

1000 1198 1184.2 +13.8

2000 1242 1247.3 -5.3

5000 1250 1247.6 +2.4

10000 1251 1247.6 +3.4

Table 1. Logistic Saturation Model: Observed vs. Predicted Response Times (Scenario 1)

lr:Figure 1. Response Time T(u) as a Function of Concurrent Users Under Logistic
Saturation Model. The solid curve represents the fitted logistic model; data points are
observed values from Scenario 1 (N=2 instances, no auto-scaling). Three regimes are
visible: stable (u < 400), transition (400 < u < 1000), and saturation (u > 1000). The vertical
dashed line marks the inflection point u_c = 742.

Figure 1. Response Time T(u) as a Function of Concurrent Users Under Logistic Saturation Model. The solid curve
represents the fitted logistic model; data points are observed values from Scenario 1 (N=2 instances, no auto-scaling).
Three regimes are visible: stable (u < 400), transition (400 < u < 1000), and saturation (u > 1000). The vertical dashed line
marks the inflection point u_c = 742.

4.2 Comparative Scenario Analysis

The four load-testing scenarios yielded markedly different performance profiles under
peak load (10,000 concurrent users):

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 9/22

https://americanimpactreview.com/article/e2026001

Metric Scenario 1 (Baseline) Scenario 2 (Queue) Scenario 3 (Failure) Scenario 4 (Auto-Scale)

Instances (peak) 2 8 (6 active + 2 reserve) 4 (with failures) 16 (auto-scaled)
p50 Latency, ms 1198 287 643 89

p95 Latency, ms 2341 512 1876 178

p99 Latency, ms 3782 891 4210 312
Throughput, RPS 1,240 4,870 2,110 9,640

Error Rate, % 8.34 1.12 5.67 0.03
Availability, % 91.66 98.88 94.33 99.97

CPU Utilization, % 97.2 68.4 82.1 54.3

Memory Utilization, % 89.1 61.7 74.3 48.9

Table 2. Comparative Performance Metrics Across Four Load-Testing Scenarios at 10,000 Concurrent Users

Scenario 4 (Auto-Scaling) achieved the best performance across all metrics, with p99
latency of 312 ms (vs. 3,782 ms in Scenario 1, a 91.8% reduction), error rate of 0.03% (vs.
8.34%), and availability of 99.97%. The horizontal scaling from 2 to 16 instances reduced
p99 latency by 73.2% relative to the 8-instance queued configuration (Scenario 2).

lr:Figure 2. Comparative Latency Distribution Across Four Load-Testing Scenarios. Box
plots show the distribution of response times at 10,000 concurrent users. The whiskers
extend to the 1st and 99th percentiles. Scenario 4 (Auto-Scale) demonstrates both the
lowest median latency and the tightest distribution, indicating consistent performance
under load.

Figure 2. Comparative Latency Distribution Across Four Load-Testing Scenarios. Box plots show the distribution of
response times at 10,000 concurrent users. The whiskers extend to the 1st and 99th percentiles. Scenario 4 (Auto-Scale)
demonstrates both the lowest median latency and the tightest distribution, indicating consistent performance under
load.

4.3 Scaling Efficiency Analysis

To quantify scaling efficiency, we computed the throughput gain factor G(N) =
Throughput(N) / Throughput(2) as a function of instance count N:

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 10/22

https://americanimpactreview.com/article/e2026001

Instance Count (N) Throughput, RPS G(N) Observed G(N) USL Predicted Efficiency E(N) = G(N)/N * 2

2 1,240 1.00 1.00 100.0%
4 2,380 1.92 1.89 96.0%
8 4,870 3.93 3.71 98.2%
12 7,410 5.98 5.36 99.6%
16 9,640 7.77 6.84 97.2%

Table 3. Scaling Efficiency: Observed Throughput Gain vs. Universal Scalability Law Predictions

The USL regression on throughput data yielded contention coefficient alpha = 0.018 and
coherency coefficient beta = 0.0004, indicating low serialization overhead and minimal
cross-node communication penalty. Notably, the observed throughput exceeded USL
predictions at higher instance counts, likely due to cache warming effects and connection
pool optimization in the Kubernetes environment.

To complement the throughput-based USL analysis, we additionally fitted the USL to
p99 latency reduction as a function of instance count. Defining latency improvement L(N)
= Latency(2) / Latency(N), USL regression yielded alpha_lat = 0.031 and beta_lat = 0.0012,
with R-squared = 0.981. The higher contention and coherency coefficients for latency
(compared to throughput) are expected: while throughput scales with aggregate capacity,
tail latency is sensitive to request serialization at shared resources (connection pools,
database locks) and cross-node coordination overhead. This divergence between
throughput and latency scalability reinforces the recommendation to monitor both
dimensions independently rather than treating throughput as a proxy for latency
performance.

Instance Count (N) p99 Latency (ms) L(N) Observed L(N) USL Predicted
2 3,782 1.00 1.00
4 2,104 1.80 1.78
8 891 4.25 3.93
12 534 7.08 5.67
16 312 12.12 7.14

Table 3b. Latency-Based USL Analysis: Observed vs. Predicted p99 Latency Improvement
Factor

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 11722

https://americanimpactreview.com/article/e2026001

The observed latency improvement at N=16 (12.12x) significantly exceeded the USL
prediction (7.14x), suggesting that auto-scaling produces super-linear latency benefits --
possibly because reducing per-instance queue depth has a nonlinear effect on tail latency,
consistent with queueing-theoretic predictions for M/M/c systems where waiting time
decreases sharply as the number of servers exceeds the offered load.

lr:Figure 3. Availability and Error Rate Under Horizontal Scaling (2 to 16 Instances). Left
axis: availability (%) increases monotonically with instance count, crossing the 99.9%
threshold at N=6. Right axis: error rate (%) decreases exponentially. The shaded region
indicates the SLA compliance zone (availability > 99.9%, error rate < 0.5%).

Figure 3. Availability and Error Rate Under Horizontal Scaling (2 to 16 Instances). Left axis: availability (%) increases
monotonically with instance count, crossing the 99.9% threshold at N=6. Right axis: error rate (%) decreases
exponentially. The shaded region indicates the SLA compliance zone (availability > 99.9%, error rate < 0.5%).

4.4 Anomaly Detection Results

The Irwin criterion was applied to a 24-hour monitoring stream of 1-minute-interval
latency observations (n = 1,440) from the production environment. At significance level
alpha = 0.05, the method identified 23 anomalous data points (1.6% of observations), of
which 19 (82.6%) corresponded to confirmed operational incidents (deployment events,
database failovers, external APl timeouts). The remaining 4 were attributable to
measurement noise. By comparison, a static threshold approach (flagging all observations
exceeding 2 standard deviations from the mean) generated 67 alerts, of which only 22
(32.8%) corresponded to confirmed incidents, yielding a false-positive rate of 67.2%.

Method Total Alerts True Positives False Positives Precision Recall
Irwin Criterion (alpha = 0.05) 23 19 4 82.6% 86.4%
Static Threshold (2 sigma) 67 22 45 32.8% 100.0%
Static Threshold (3 sigma) 11 9 2 81.8% 40.9%

Table 4. Anomaly Detection Performance: Irwin Criterion vs. Static Threshold Methods

Seasonal decomposition analysis. The 24-hour monitoring window exhibited a diurnal
traffic pattern with a peak-to-trough ratio of approximately 3.2:1. To assess the impact of
this non-stationarity on detection performance, we additionally applied a Seasonal Hybrid
ESD (S-H-ESD) method (Hochenbaum et al., 2017), which first decomposes the time series
into trend, seasonal, and residual components before applying an ESD test to the
residuals. The S-H-ESD approach identified 21 anomalies with 85.7% precision and 81.8%
recall -- marginally outperforming the Irwin criterion on precision but slightly
underperforming on recall. The modest improvement suggests that, for 24-hour windows,

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 12/22

https://americanimpactreview.com/article/e2026001

the Irwin criterion provides a reasonable approximation; however, for multi-day or multi-
week monitoring windows where seasonal patterns are more pronounced, S-H-ESD or
comparable seasonal methods should be preferred. We acknowledge this as a limitation
of the present evaluation scope.

4.5 AHP-Based SLA Factor Ranking

The aggregated pairwise comparison matrix from five experts yielded the following
priority weights (consistency ratio CR = 0.047, well below the 0.10 threshold):

SLA Factor Priority Weight Rank
Availability (Uptime) 0.347 1
Response Latency 0.251 2
Error Rate 0.187 3
Throughput 0.112 4
APDEX (User Satisfaction) 0.067 5
Resource Utilization 0.036 6

Table 5. AHP-Based Priority Weights for SLA Factors (n = 5 Expert Assessors, CR = 0.047)

lr:Figure 4. SLA Factor Importance Rankings via AHP-Based Expert Assessment. Bar chart
showing priority weights for six SLA factors. Availability dominates with weight 0.347,
followed by Latency (0.251) and Error Rate (0.187). Resource Utilization receives the lowest
weight (0.036), consistent with the principle that cost optimization should not compromise
service quality.

Figure 4. SLA Factor Importance Rankings via AHP-Based Expert Assessment. Bar chart showing priority weights for six
SLA factors. Availability dominates with weight 0.347, followed by Latency (0.251) and Error Rate (0.187). Resource
Utilization receives the lowest weight (0.036), consistent with the principle that cost optimization should not compromise
service quality.

4.6 Failure Probability Under Replication

Applying the compound failure probability model with empirically measured per-instance
failure probability p = 0.02 (approximately one failure per 50 hours of operation) yields the
following system-level failure probabilities for a 6-service architecture:

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 13722

https://americanimpactreview.com/article/e2026001

Instances per Service (n) Per-Service Failure P_fail System Failure P_system Annualized Downtime

1 2.00 x 101-2 1.14 x 1071 41.6 days

2 4.00 x 107-4 2.40 x 10"-3 21.0 hours

3 8.00 x 101-6 4.80 x 10~-5 25.2 minutes
4 1.60 x 107-7 9.60 x 101-7 30.3 seconds
5 3.20 x 10"-9 1.92 x 107-8 0.61 seconds

Table 6. System Failure Probability and Annualized Downtime as a Function of Instance Replication (p = 0.02, N = 6 services)

These calculations demonstrate the exponential benefit of replication: tripling instances
from 1 to 3 reduces annualized downtime from 41.6 days to 25.2 minutes -- a factor of
approximately 2,376.

5. Discussion

5.1 Theoretical Implications

The results confirm and extend several theoretical propositions. The logistic saturation
model (R-squared = 0.994) provides a parsimonious yet accurate description of the
nonlinear response-time behavior characteristic of HLS under load. This model offers
advantages over linear or polynomial alternatives: it naturally captures the three-regime
structure (stable, transition, saturation) observed empirically, and its parameters have
direct physical interpretations (T_O as baseline performance, u_c as system capacity, k as
sensitivity to load changes). The inflection point u_c = 742 users in the 2-instance
configuration serves as a critical planning parameter, marking the onset of performance
degradation that precedes system failure.

The relationship between our logistic model and classical queueing theory deserves
elaboration. For an M/M/c queue, the expected response time diverges hyperbolically as
utilization rho approaches 1. The logistic model, by imposing a finite upper bound T_max,
effectively regularizes this divergence -- a pragmatic accommodation of the fact that real
systems do not exhibit infinite response times but rather fail, drop requests, or trigger
circuit-breaker mechanisms. The logistic model may therefore be interpreted as a
phenomenological description of the ensemble behavior of a queueing system with
overload protection, bridging the gap between idealized queueing theory and empirical
system behavior.

The USL analysis reveals contention coefficient alpha = 0.018 and coherency coefficient
beta = 0.0004, placing our system in the "near-linear" scalability regime. This is consistent
with the microservice architecture's design goal of minimizing shared state and inter-

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 14722

https://americanimpactreview.com/article/e2026001

service coupling. The low beta value is particularly noteworthy, as it indicates that the
Kubernetes service mesh imposes minimal coherency overhead even at 16 nodes -- a
finding that may not generalize to architectures with stronger consistency requirements
(e.g., distributed databases with synchronous replication).

5.2 The Evidence-Based Framework in Practice

The evidence-based approach to HLS management, as articulated in this work, requires a
clear understanding of the levels of evidential rigor appropriate to different decision
contexts. We propose a three-tier hierarchy:

Tier 1: Monitoring and Experiments. Decisions based on direct observation of system
metrics and controlled load tests. This is the most common and most immediately
actionable form of evidence, exemplified by the load-testing results presented in Section
4. However, monitoring data are susceptible to confounding (e.g., traffic composition
changes, external dependency effects), and load tests, while informative, do not replicate
the full complexity of production workloads.

Tier 2: Verification and Validation. Decisions informed by mathematical models that
have been validated against empirical data. The logistic saturation model and the
compound failure probability model operate at this tier. Validation -- confirming that a
model accurately represents the system it purports to describe -- is distinct from
verification -- confirming that a model is internally consistent (Oberkampf & Trucano,
2002). Both are necessary for evidence-based confidence.

Tier 3: Formal Proof. Decisions grounded in mathematically provable properties of the
system. Examples include formal verification of distributed consensus algorithms (e.g.,
TLA+ specifications of Raft or Paxos) and provably correct auto-scaling policies derived
from control theory. This tier provides the highest evidential rigor but is applicable only to
well-formalized aspects of the system.

Most practical scaling decisions operate at Tier 1 with occasional elevation to Tier 2.
Elevating more decisions to Tier 2 and above is a key goal of the evidence-based
approach.

5.3 Anomaly Detection: Statistical vs. Machine Learning Approaches

The Irwin criterion achieved 82.6% precision and 86.4% recall on our monitoring data,
significantly outperforming the naive 2-sigma threshold (32.8% precision) while
maintaining interpretability. However, the Irwin criterion assumes that the underlying data

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 15/22

https://americanimpactreview.com/article/e2026001

distribution is approximately Gaussian and that observations are serially independent --
assumptions that are violated in monitoring streams exhibiting diurnal patterns, trends,
or autocorrelation.

Modern anomaly detection approaches address these limitations through: seasonal
decomposition followed by residual analysis (Hochenbaum et al., 2017); autoregressive
models that account for temporal dependencies; and machine learning methods such as
isolation forests, one-class SVMs, and deep autoencoders (Chalapathy & Chawla, 2019).
These methods generally achieve higher accuracy at the cost of reduced interpretability
and increased computational complexity. The choice between statistical and machine
learning methods therefore involves a tradeoff between accuracy, interpretability,
computational cost, and the ability of operators to understand and trust the alerts they
receive.

We argue that for operational monitoring, interpretability is undervalued. An alert that
cannot be explained to an on-call engineer is an alert that will be ignored. The Irwin
criterion, while less powerful than neural network-based detectors, produces alerts
accompanied by a clear rationale ("this observation deviates from the preceding
observation by X standard deviations"), facilitating rapid human decision-making.

5.4 Philosophical Considerations: The Limits of Automation

A persistent theme in HLS monitoring is the aspiration toward full automation -- self-
healing systems that detect, diagnose, and remediate failures without human
intervention. The development trends identified in our literature review (Al-driven
monitoring, self-healing architectures, observability platforms) all point toward this
aspiration. Yet our analysis suggests fundamental limits to automation that warrant
philosophical reflection.

The first limit is the formalizability boundary. Not all operational situations can be
formalized as rules, models, or policies. Novel failure modes, cascading failures involving
unanticipated dependencies, and scenarios requiring contextual judgment (e.g., "Is a 200
ms latency increase acceptable during a product launch?") resist algorithmic specification.
This is an instance of what Dreyfus and Dreyfus (1986) termed the "expert" level of skill
acquisition, where proficiency depends on pattern recognition in context rather than rule
application.

The second limit is the anti-pattern problem (Ziborev, 2023). Anti-patterns -- recurring
suboptimal practices that emerge from organizational, cognitive, or technical pressures --
are resistant to automated detection because they are, by definition, patterns that "look
correct" within their local context. Examples include alert fatigue (desensitization to

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 16/22

https://americanimpactreview.com/article/e2026001

monitoring alerts due to excessive false positives), cargo-cult scaling (adding resources
without understanding bottlenecks), and monitoring theater (collecting metrics without
acting on them). These anti-patterns require organizational and cultural interventions, not
technological solutions.

The third limit is the observability gap. Even with comprehensive monitoring, the
internal state of a complex distributed system is never fully observable. Heisenberg-like
effects exist: the act of monitoring (probe packets, health checks, metric collection)
consumes resources and introduces latency, potentially altering the system state being
observed. Moreover, monitoring necessarily involves sampling and aggregation, which
introduces information loss. The gap between the "system as monitored" and the "system
as itis" can never be fully closed.

These limits do not counsel abandoning automation, but rather adopting a hybrid
approach in which automated systems handle routine detection and response while
human operators retain authority over novel, ambiguous, or high-stakes situations. The
evidence-based framework proposed in this work provides a principled basis for deciding
which situations warrant human involvement: the more uncertain the evidence, the lower
the tier of evidential rigor available, and the higher the stakes, the more essential human
judgment becomes.

5.5 What Could Be Achieved and What Could Not

Our experimental results demonstrate several concrete achievements: (a) the logistic
model can predict saturation onset within 4.1% accuracy, enabling proactive scaling
decisions; (b) auto-scaling from 2 to 16 instances maintains 99.97% availability under 10x
load increase; (c) the Irwin criterion reduces false-positive alerts by 67% compared to
static thresholds; (d) AHP-based SLA factor ranking provides a structured, reproducible
alternative to ad hoc prioritization.

However, several important questions remain beyond the reach of the current
framework. The logistic model, while accurate for stationary load profiles, does not
capture the dynamics of load changes (ramp rates, oscillations, flash crowds). The
compound failure probability model assumes independence of failures, an assumption
that breaks down for correlated failures (shared infrastructure, software bugs, operator
errors). The AHP ranking, while consistent (CR = 0.047), reflects expert judgment at a
single point in time and may not generalize across industries, geographies, or
organizational cultures.

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 17122

https://americanimpactreview.com/article/e2026001

Furthermore, the transition from prediction to action remains underspecified. Our
framework tells operators when to scale and how much scaling is needed, but not how to
implement scaling without disrupting active connections, how to handle data consistency
during scale-out events, or how to cost-optimize scaling decisions under heterogeneous
pricing models. These operational questions, while critical, require domain-specific
knowledge that resists universal formalization.

5.6 Practical Recommendations

Based on the evidence presented, we offer the following recommendations for HLS
operators:
1. Adopt multi-percentile latency monitoring. Reporting only mean or median latency masks tail-latency

problems that disproportionately affect user experience. Monitor p50, p95, and p99 latencies, with SLA
thresholds set at p99.

2. Use the logistic saturation model for capacity planning. Calibrate the model against periodic load
tests (at least quarterly) and use the inflection point u_c as the primary trigger for scaling decisions.

3. Implement statistical anomaly detection. Replace static thresholds with the Irwin criterion or
comparable statistical methods to reduce alert fatigue while maintaining detection sensitivity.

4. Replicate critical services to at least 3 instances. Our failure probability analysis shows that tripling
from 1 to 3 instances reduces annualized downtime by a factor of approximately 2,376.

5. Conduct structured SLA factor prioritization. Use AHP or comparable multi-criteria methods to
ensure that monitoring and alerting priorities reflect actual consumer importance rather than technical
convenience.

6. Maintain human oversight for high-stakes decisions. Reserve automated action for routine scaling
events; require human approval for novel scenarios, major architectural changes, and cost-significant
resource allocations.

lr:Figure 5. Conceptual Architecture of an Integrated HLS Monitoring and Auto-Scaling
Pipeline. The pipeline comprises five stages: Data Collection (metrics, logs, traces from the
infrastructure, application, and business layers), Anomaly Detection (Irwin criterion for
real-time alerts), Predictive Modeling (logistic saturation model for capacity forecasting),
Decision Engine (evidence-based framework with AHP-weighted SLA priorities), and Action
Layer (auto-scaling with human override for high-stakes decisions). Feedback loops enable
continuous model recalibration.

Figure 5. Conceptual Architecture of an Integrated HLS Monitoring and Auto-Scaling Pipeline. The pipeline comprises
five stages: Data Collection (metrics, logs, traces from the infrastructure, application, and business layers), Anomaly
Detection (Irwin criterion for real-time alerts), Predictive Modeling (logistic saturation model for capacity forecasting),
Decision Engine (evidence-based framework with AHP-weighted SLA priorities), and Action Layer (auto-scaling with
human override for high-stakes decisions). Feedback loops enable continuous model recalibration.

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 18722

https://americanimpactreview.com/article/e2026001

5.7 Limitations

This study has several limitations. First, the experimental platform, while representative of
cloud-native architectures, is a single system; generalization to other architectures
(mainframe, edge computing, serverless) requires further validation. Second, the load-
testing protocol employed synthetic workloads, which may not capture the full complexity
of production traffic patterns (e.g., correlated request bursts, session stickiness,
geographic distribution). Third, the AHP assessment was conducted with five experts from
a single industry vertical (cloud services); broader expert panels spanning finance,
healthcare, and telecommunications would strengthen the generalizability of the SLA
factor rankings. Fourth, long-term (multi-month) monitoring data were not available,
precluding analysis of seasonal trends and long-term model drift. Fifth, the cost dimension
of scaling -- a critical factor in practice -- was not formally incorporated into the
framework.

6. Conclusion

This work has developed and validated an integrated framework for HLS monitoring and
scalability management that combines mathematical modeling, statistical anomaly
detection, structured expert assessment, and evidence-based decision-making. The
principal contributions are:

1. A logistic saturation model of system throughput that accurately predicts (R-squared = 0.994, 4.1%

deviation at saturation onset) the nonlinear relationship between concurrent users and response time,
providing a principled basis for proactive capacity planning.

2. Empirical validation of the Irwin criterion for anomaly detection in monitoring streams, achieving 82.6%
precision and 86.4% recall, with a 67% reduction in false positives compared to static threshold
methods.

3. An AHP-based methodology for ranking SLA factors by consumer importance, yielding Availability
(0.347), Latency (0.251), and Error Rate (0.187) as the top three priorities.

4. Experimental evidence from four load-testing scenarios demonstrating that horizontal auto-scaling from
2 to 16 instances reduces p99 latency by 91.8% and error rate by 99.6% while maintaining 99.97%
availability.

5. A three-tier evidence-based framework (Monitoring/Experiments, Verification/Validation, Formal Proof)
that provides a structured epistemological foundation for scaling decisions.

The results indicate that full automation of monitoring and scaling, while desirable, is
constrained by the formalizability boundary, the anti-pattern problem, and the
observability gap. A hybrid approach combining automated routine response with human
oversight for novel and high-stakes situations is recommended.

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 19/22

https://americanimpactreview.com/article/e2026001

Future research should extend the framework in several directions: incorporation of
cost-optimization models for multi-cloud scaling; adaptation of anomaly detection
methods for non-stationary, seasonally varying workloads; development of causal (rather
than correlational) models linking monitoring observations to root causes; and
longitudinal validation of the evidence-based framework across diverse industrial sectors
and organizational contexts. The convergence of Al-driven monitoring, self-healing
architectures, and observability platforms points toward a future in which the framework
proposed here could be implemented as an intelligent, continuously learning system --
one that augments, rather than replaces, human judgment.

Author Contributions

Nikolai Stepanov: Conceptualization, Methodology, Formal Analysis, Investigation,
Writing -- Original Draft, Writing -- Review & Editing, Visualization. Bogdan Mikhaylov:
Methodology, Software, Investigation, Data Curation, Writing -- Original Draft, Writing --
Review & Editing.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability

The load-testing datasets and analysis scripts used in this study are available from the
corresponding author upon reasonable request.

References
1. Barlow, R. E., & Proschan, F. (1975). Statistical theory of reliability and life testing: Probability models. Holt,
Rinehart and Winston.

2. Beyer, B., Jones, C., Petoff, J., & Murphy, N. R. (2016). Site reliability engineering: How Google runs production
systems. O'Reilly Media.

3. Chalapathy, R., & Chawla, S. (2019). Deep learning for anomaly detection: A survey. arXiv preprint,
arXiv:1901.03407.

4. Dean, J., & Barroso, L. A. (2013). The tail at scale. Communications of the ACM, 56(2), 74-80.
https://doi.org/10.1145/2408776.2408794

5. Dreyfus, H. L., & Dreyfus, S. E. (1986). Mind over machine: The power of human intuition and expertise in the era
of the computer. Free Press.

6. Gartner. (2024). Worldwide public cloud services end-user spending forecast. Gartner Research. Retrieved from
https://www.gartner.com/en/newsroom/press-releases

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 20/22

https://americanimpactreview.com/article/e2026001

7. Gunther, N. J. (2007). Guerrilla capacity planning: A tactical approach to planning for highly scalable applications
and services. Springer.

8. Hochenbaum, J., Vallis, O. S., & Kejariwal, A. (2017). Automatic anomaly detection in the cloud via statistical
learning. arXiv preprint, arXiv:1704.07706.

9.1rwin, J. 0. (1925). On a criterion for the rejection of outlying observations. Biometrika, 17(3/4), 238-250.
10. Kendall, D. G. (1953). Stochastic processes occurring in the theory of queues and their analysis by the method of
the imbedded Markov chain. The Annals of Mathematical Statistics, 24(3), 338-354.

11. Kitchenham, B. A., Dyba, T., & Jorgensen, M. (2004). Evidence-based software engineering. Proceedings of the
26th International Conference on Software Engineering (ICSE '04), 273-281.
https://doi.org/10.1109/1CSE.2004.1317449

12. Kleinrock, L. (1975). Queueing systems, Volume 1: Theory. John Wiley & Sons.

13. Little, J. D. C. (1961). A proof for the queuing formula: L = lambda W. Operations Research, 9(3), 383-387.

14. Oberkampf, W. L., & Trucano, T. G. (2002). Verification and validation in computational fluid dynamics. Progress
in Aerospace Sciences, 38(3), 209-272.

15. Popkov, Y. S., Dubnov, Y. A., & Popkov, A. Y. (2016). New method of randomized forecasting using entropy-
robust estimation: Application to the world population prediction. Mathematics, 4(1), 1-16.

16. Rosner, B. (1983). Percentage points for a generalized ESD many-outlier procedure. Technometrics, 25(2), 165-
172.

17. Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. McGraw-Hill.

18. Saaty, T. L., & Vargas, L. G. (2012). Models, methods, concepts & applications of the analytic hierarchy process
(2nd ed.). Springer.

19. Sackett, D. L., Rosenberg, W. M. C., Gray, J. A. M., Haynes, R. B., & Richardson, W. S. (1996). Evidence based
medicine: What it is and what it isn't. BMJ, 312(7023), 71-72.

20. Semenov, A. L., Fiofanova, O. A., Babchenko, O. I, et al. (2021). Izvlech' smysl. Problemy analiza dannykh v
obrazovanii [Extracting meaning: Problems of data analysis in education]. Obrazovatel'naya politika, 2021(3(87)),
60-65.

21. Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson, P., Plakal, M., Beaver, D., Jaspan, S., & Shanbhag, C.
(2010). Dapper, a large-scale distributed systems tracing infrastructure. Google Technical Report.

22.Smirnov, N. A., Chervyakov, L. M., & Bychkova, N. A. (2025). Povyshenie effektivnosti poiskovykh zaprosov
vysokonagruzhennykh prilozhenii [Improving the efficiency of search queries in high-load applications]. lzvestiya
Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2025(2), 152-158.

23. Sridharan, C. (2018). Distributed systems observability: A guide to building robust systems. O'Reilly Media.

24. Zalyazhnykh, V. V. (2020). Rasshirenie oblasti primeneniya kriteriya Irvina pri obnaruzhenii anomal'nykh
izmerenii [Extending the application domain of the Irwin criterion in anomalous measurement detection].
Vestnik SibGUTI, 2020(2), 95-100.

25. Ziborev, A. V. (2023). Antipattreny postroeniya mikroservisnykh prilozhenii v vysokonagruzhennykh proektakh
[Anti-patterns in the construction of microservice applications in high-load projects]. Universum (tekhnicheskie
nauki), 2023(11(116)), 29-34.

26. Gashimoy, R. E. (2025). Proektirovanie masshtabiruemykh raspredelennykh mikroservisnykh backend-sistem
dlya vysokonagruzhennykh sred [Designing scalable distributed microservice backend systems for high-load
environments]. Aktual'nye issledovaniya, 2025(17(262)), Part 1, 9-16.

27. L'vovskii, E. N. (1988). Statisticheskie metody postroeniya empiricheskikh formul [Statistical methods for
constructing empirical formulas] (2nd ed.). Moscow: Vysshaya shkola.

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 21/22

https://americanimpactreview.com/article/e2026001

Disclosure: The authors declare no conflicts of interest. No external funding was received for this work. This article is
published under the Creative Commons Attribution 4.0 International License (CC BY 4.0). Readers may share, copy, and
redistribute the material in any medium or format, and adapt, remix, transform, and build upon the material for any
purpose, even commercially, provided appropriate credit is given. Citation: Stepanov, N., & Mikhaylov, B. (2026).
Monitoring and scalability of high-load systems: An evidence-based framework for real-time SLA compliance and
customer satisfaction optimization. American Impact Review, e2026001.

American Impact Review | https://americanimpactreview.com/article/e2026001 February 10, 2026 22/22

https://americanimpactreview.com/article/e2026001

